Winter School in Abstract Analysis 2013

Forcing with filters and ideals (part I.)

Michael Hrušák

CCM Universidad Nacional Autónoma de México michael@matmor.unam.mx

> Hejnice 2013

医下口 医下

Filters and ideals

Examples of forcing notions associated to filters/ideals Destructibility of ideals by forcing Mathias-Prikry and Laver-Prikry forcing Preservation of ω -hitting and the $L_{\mathcal{F}}$ forcing

Contents

Filters and ideals

Examples of forcing notions associated to filters/ideals

- Oestructibility of ideals by forcing
- 4 Mathias-Prikry and Laver-Prikry forcing
- 5 Preservation of ω -hitting and the $\mathbb{L}_\mathcal{F}$ forcing

A B M A B M

____ ▶

Filters and ideals

Examples of forcing notions associated to filters/ideals Destructibility of ideals by forcing Mathias-Prikry and Laver-Prikry forcing Preservation of ω-hitting and the L_J forcing

Filters and ideals

Definition

A family \mathcal{I} of subsets of a (countable) set X is an *ideal* if it is (1) closed under subsets, (2) closed under finite unions, (3) $X \notin \mathcal{I}$ and (4) it contains all singletons of X. Dually, a family \mathcal{F} of subsets of X is a *filter* if it is (1) closed under supersets, (2) closed under finite intersections (3) $\emptyset \notin \mathcal{F}$ and (4) it contains all co-finite subsets of X.

For an ideal \mathcal{I} on X,

- $\mathcal{I}^* = \{X \setminus I : I \in \mathcal{I}\}$ is the *dual* filter (and the same for filters),
- \mathcal{I}^+ denotes $\mathcal{P}(X) \setminus \mathcal{I}$ (for filters $\mathcal{F}^+ = \mathcal{P}(X) \setminus \mathcal{F}^*$).

Special classes of filters and ideals

An ideal ${\mathcal I}$ on ω is

- tall if for every infinite A ⊆ ω there is an I ∈ I such that |A ∩ I| is infinite,
- a *P-ideal* if for every $\langle I_n : n \in \omega \rangle \subseteq \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_n \setminus I$ is finite for all $n \in \omega$,
- ω -hitting if for every $\langle A_n : n \in \omega \rangle \subseteq [\omega]^{\omega}$ there is an $I \in \mathcal{I}$ such that $A_n \cap I$ is infinite for all $n \in \omega$,
- is a P⁺-*ideal* if for every decreasing sequence $\langle X_n : n < \omega \rangle$ of \mathcal{I} -positive sets there is an \mathcal{I} -positive set X such that $X \subseteq^* X_n$, for all $n < \omega$.
- meager, Borel, analytic,... if it is meager, Borel, analytic,... as a subspace of $\mathcal{P}(\omega) \simeq 2^{\omega}$.

Every ω -hitting ideal is tall, and every tall P-ideal is ω -hitting.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\label{eq:constraints} \begin{array}{c} \mbox{Filters and ideals} \\ \mbox{Examples of forcing notions associated to filters/ideals} \\ \mbox{Destructibility of ideals by forcing} \\ \mbox{Mathias-Prikry and Laver-Prikry forcing} \\ \mbox{Preservation of ω-hitting and the $L_{\mathcal{F}}$-forcing} \end{array}$

Special ultrafilters

An ultrafilter ${\mathcal U}$ on ω is

- selective if for every partition {I_n : n ∈ ω} of ω into sets not in U there is U ∈ U such that |U ∩ I_n| = 1 for every n ∈ ω.
- a *P*-point if for every partition {*I_n* : *n* ∈ ω} of ω into sets not in U there is U ∈ U such that |U ∩ *I_n*| is finite for every *n* ∈ ω.
- a Q-point if for every partition {I_n : n ∈ ω} of ω into finite sets there is U ∈ U such that |U ∩ I_n| = 1 for every n ∈ ω.
- *rapid* if the family of increasing enumerations of elements of U is dominating.
- nowhere dense (or a nwd-ultrafilter) if for every map f : ω → ℝ there is a U ∈ U such that f[U] is a nowhere dense subset of ℝ.

An ultrafilter ${\cal U}$ is selective iff it is both a P-point and a Q-point, every Q-point is rapid and every P-point is nwd.

Orderings on filters and ideals

Let \mathcal{I} and \mathcal{J} be ideals on ω .

- (Katětov order) $\mathcal{I} \leq_{\kappa} \mathcal{J}$ if there is a function $f : \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$, for all $I \in \mathcal{I}$.
- (Katětov-Blass order) $\mathcal{I} \leq_{KB} \mathcal{J}$ if there is a finite-to-one function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$, for all $I \in \mathcal{I}$.
- (Rudin-Keisler order) $\mathcal{I} \leq_{RK} \mathcal{J}$ if there is a function $f : \omega \to \omega$ such that $A \in \mathcal{I}$ if and only if $f^{-1}[A] \in \mathcal{J}$.
- (Tukey order) $\mathcal{I} \leq_{\mathcal{T}} \mathcal{J}$ if there is a function $f : \mathcal{I} \to \mathcal{J}$ such that for every \subseteq -bounded set $X \subseteq \mathcal{J}$, $f^{-1}[X]$ is \subseteq -bounded in \mathcal{I} .

- 4 同 2 4 回 2 4 U

Contents

2 Examples of forcing notions associated to filters/ideals

- 3 Destructibility of ideals by forcing
- 4 Mathias-Prikry and Laver-Prikry forcing
- 5 Preservation of ω -hitting and the $\mathbb{L}_\mathcal{F}$ forcing

A B M A B M

A >

Examples of forcing notions associated to filters/ideals

- Grigorieff forcing Silver restricted to a (non-meager P-)ideal
- Mathias-Prikry forcing Mathias forcing restricted to a filter
- Laver-Prikry forcing ... Laver forcing branching into a filter
- Matet-Prikry forcing Matet forcing restricted to a union-ultrafilter
- \bullet Sabok-Zapletal forcing \dots Miller forcing branching into an \mathcal{F}^+ of a filter
- \bullet Farah-Zapletal forcings . . . Mathias restricted and Laver branching to \mathcal{F}^+ of a filter
- Forcing $\mathcal{P}(\omega)/\mathcal{I}$... interesting for definable \mathcal{I} .
- Laflamme forcing $\ldots \omega^{\omega}$ -bounding forcing associated to an F_{σ} -ideal
- P-ideal forcing of Zapletal ... natural forcing destroying a P-ideal
- Borel(I)/ $\langle P(I) : I \in I \rangle$... natural forcing increasing the cofinality of a Borel ideal
- Forcing with classes of filters and/or ideals . . . e.g. (Laflamme) for F_{σ} ideals.

 $\label{eq:constraints} Filters and ideals Examples of forcing notions associated to filters (ideals$ **Destructibility of ideals by forcing** $Mathias-Prikry and Laver-Prikry forcing Preservation of <math>\omega$ -hitting and the L $_{\mathcal{F}}$ forcing

Contents

Filters and ideals

2 Examples of forcing notions associated to filters/ideals

Oestructibility of ideals by forcing

4 Mathias-Prikry and Laver-Prikry forcing

5) Preservation of ω -hitting and the $\mathbb{L}_\mathcal{F}$ forcing

A B + A B +

____ ▶

Destructibility of ideals by forcing

Definition

Given an ideal $\mathcal I$ and a forcing notion $\mathbb P$, we say that $\mathbb P$ destroys $\mathcal I$ if there is a $\mathbb P$ -name $\dot X$ for an infinite subset of ω such that

 $\Vdash_{\mathbb{P}} ``I \cap \dot{X} \text{ is finite for every } I \in \mathcal{I}'.$

Destroying an ideal (which really means destroying *tallness* of the ideal) is, in the dual language of filters, called also *diagonalizing* or *zapping* a filter. The general question, central in combinatorial set theory of the reals, is the following:

Question

When does a given forcing destroy a given ideal?

伺 ト イヨト イヨト

Destructibility of ideals by forcing

Definition (Brendle)

Given a σ -ideal I on ω^{ω} , its *trace ideal* tr(I) is an ideal on $\omega^{<\omega}$ defined by $A \in tr(I)$ if and only if $\{r : \exists^{\infty} n \in \omega \ (r|n \in A)\} \in I$.

Theorem (H.-Zapletal)

Let I be a σ -ideal on ω^{ω} . If P_I is a proper forcing with CRN then $\mathcal{P}(\omega^{<\omega})/tr(I)$ is a proper forcing as well and it is naturally isomorphic to a two-step iteration of P_I followed by an \aleph_0 -distributive forcing.

Here P_I denotes the forcing consisting of *I*-positive Borel subsets of ω^{ω} , ordered by inclusion, where *I* is a σ -ideal on ω^{ω} , If P_I is a proper forcing then it has the *CRN* if for every Borel function $f : B \to 2^{\omega}$ with an *I*-positive Borel domain *B* there is an *I*-positive Borel set $C \subseteq B$ such that f|C is continuous.

Destructibility of ideals by forcing

Theorem (H.-Zapletal)

Let P_1 be a proper forcing with CRN, which is continuously homogeneous, and let \mathcal{J} be an ideal on ω . Then the following conditions are equivalent:

(1) P_I destroys \mathcal{J}

(2) $\mathcal{J} \leq_{\mathcal{K}} tr(I)$.

A forcing of the form P_I where I is a σ -ideal on ω^{ω} is *continuously* homogeneous if for every I-positive Borel set B there is a continuous function $F : \omega^{\omega} \to B$ such that $F^{-1}(A) \in I$ for all $A \in I|B$.

Observation

If $\mathcal{I} \leq_{\kappa} \mathcal{J}$ and \mathbb{P} destroys \mathcal{J} then \mathbb{P} destroys \mathcal{I} .

・ロ > ・ (同 > ・ (回 > ・ (回 > ・

Destructibility of ideals by forcing

Theorem (Laflamme)

Every F_{σ} ideal can be destroyed by a proper ω^{ω} -bounding forcing.

Open problems

- (Roitman) Can every MAD family be destroyed by a proper ω^{ω} -bounding forcing?
- Can the density ideal ${\mathcal Z}$ be destroyed by a proper $\omega^\omega\text{-bounding forcing?}$
- Can every $F_{\sigma\delta}$ ideal (analytic P-ideal, or even just \mathcal{Z}) be destroyed by a proper forcing not adding a dominating real?
- Is there a Sacks-indestructible MAD family? (Yes, if $\mathfrak{b} = \mathfrak{a}$).
- (Steprans) Is there a Cohen-indestructible MAD family?

イロン イボン イヨン イヨン

Contents

Filters and ideals

Examples of forcing notions associated to filters/ideals

- 3 Destructibility of ideals by forcing
- Mathias-Prikry and Laver-Prikry forcing

) Preservation of ω -hitting and the $\mathbb{L}_\mathcal{F}$ forcing

A B M A B M

____ ▶

Mathias and Laver type forcings

Recall that

$$\mathbb{M} = \{(s, A) : s \in [\omega]^{<\omega} \text{ and } A \in [\omega]^{\omega}\}$$

ordered by $(s, A) \leq (t, B)$ if $s \supseteq t$, $A \subseteq B$ and $s \setminus t \subseteq B$, and

 $\mathbb{L} = \{ T \subseteq \omega^{<\omega} : T \text{ is a tree with stem } s_T \text{ such that } \}$

for all
$$t \in T, t \supseteq s_T \Rightarrow |succ_T(t)| = \omega\},$$

where $succ_T(t) = \{n \in \omega : t^n \in T\}$, ordered by inclusion. Given a family $\mathcal{X} \subseteq [\omega]^{\omega}$ call

$$\mathbb{M}_{\mathcal{X}} = \{(s, A) \in \mathbb{M} : A \in \mathcal{X}\}, \text{ and}$$
$$\mathbb{L}_{\mathfrak{X}} = \{T \in \mathbb{L} : \text{ for all } t \in T, t \supseteq s_T \Rightarrow \textit{succ}_T(t) \in \mathcal{X}\}$$

Theorem (Blass??)

If \mathcal{F} is a selective ultrafilter then $\mathbb{M}_{\mathcal{F}} \simeq \mathbb{L}_{\mathcal{F}}$.

The separating number

If \mathcal{F} is a filter on ω then $\mathbb{M}_{\mathcal{F}}$ and $\mathbb{L}_{\mathcal{F}}$ are σ -centered forcings. $\mathbb{M}_{\mathcal{F}}$ adds a generic subset \dot{a}_{gen} of ω , while $\mathbb{L}_{\mathcal{F}}$ adds a generic function \dot{f}_{gen} ($\in \omega^{\omega}$) and we let \dot{a}_{gen} denote its range. Both forcings destroy (even *separate*) $\mathcal{J} = \mathcal{F}^*$:

 \dot{a}_{gen} is forced to be almost disjoint from all ground model sets in \mathcal{J} and have an infinite intersection with all \mathcal{J} -positive ground model sets.

$$sep(\mathcal{J}) = min\{|\mathcal{H}| + |\mathcal{K}| : \mathcal{K} \subset \mathcal{J}, \mathcal{H} \subset \mathcal{J}^+ \text{ and} \\ \forall A \subset \omega \left((\exists J \in \mathcal{K}(|A \cap J| = \omega) \text{ or } \exists H \in \mathcal{H}(|A \cap H| < \omega)) \right\}.$$

Proposition

Let \mathcal{I} and \mathcal{J} be ideals on ω . If $\mathcal{I} \leq_{\mathsf{RK}} \mathcal{J}$ then $\operatorname{sep}(\mathcal{J}) \leq \operatorname{sep}(\mathcal{I})$.

・ロ > ・ (同 > ・ (回 > ・ (回 > ・

 $\label{eq:construction} Filters and ideals Examples of forcing notions associated to filters /ideals Destructibility of ideals by forcing Mathias-Pirkry and Laver-Pirkry forcing Preservation of <math>\omega$ -hitting and the $L_{\mathcal{F}}$ forcing

Martin's number for $\mathbb{L}_\mathcal{F}$

The σ -centered forcing $\mathbb{L}_{\mathcal{F}}$

- separates $\mathcal{F}^* = \mathcal{J}$,
- adds a dominating real, and
- (Błaszczyk-Shelah) adds a Cohen real iff ${\cal F}$ is not a nwd-ultrafilter.

Theorem (H.-Minami)

For every ideal ${\mathcal I}$ on ω

 $\mathfrak{m}(\mathbb{L}_{\mathcal{I}^*}) = \min\{\mathfrak{b}, \mathsf{sep}(\mathcal{I})\} \text{ if } \mathcal{I}^* \text{ is nowhere dense ultrafilter, and} \\ \min\{\mathsf{add}(\mathcal{M}), \mathsf{sep}(\mathcal{I})\} \text{ otherwise.} \end{cases}$

・回・ ・ヨ・ ・ヨ・

Martin's number for $\mathbb{M}_\mathcal{F}$

Denote by fin the set of non-empty finite subsets of $\omega.$ Given $\mathcal I$ an ideal on $\omega,$ let

$$\mathcal{I}^{<\omega} = \{A \subseteq \textit{fin} : (\exists I \in \mathcal{I}) (\forall a \in A) \ a \cap I \neq \emptyset\}.$$

The σ -centered forcing $\mathbb{M}_{\mathcal{F}}$

- separates $(F^*)^{<\omega} = \mathcal{J}^{<\omega}$, (more precisely $\mathbb{M}_{\mathcal{F}} \times \mathbb{C}$ separates $\mathcal{J}^{<\omega}$), and
- (Blass ??, Mathias ??) adds a Cohen real iff \mathcal{F} is not a selective ultrafilter.

Theorem (H.-Minami)

For every ideal ${\mathcal I}$ on ω

 $\mathfrak{m}(\mathbb{M}_{\mathcal{I}^*}) = \operatorname{sep}(\mathcal{I}^{<\omega}) \text{ if } \mathcal{I}^* \text{ is a selective ultrafilter, and} \\ \min\{\operatorname{cov}(\mathcal{M}), \operatorname{sep}(\mathcal{I}^{<\omega})\} \text{ otherwise.} \end{cases}$

$\mathbb{M}_\mathcal{F}$ and dominating reals

When does $\mathbb{M}_\mathcal{F}$ add a dominating real?

- (Canjar) $(\mathfrak{d} = \mathfrak{c})$, There is an ultrafilter \mathcal{U} such that the forcing $\mathbb{M}_{\mathcal{U}^*}$ does not add a dominating real (= *Canjar* ultrafilter).
- (Canjar) A Canjar ultrafilter is a P-point without rapid RK-predecessors.
- (Laflamme) Canjar \Rightarrow strong P-point \Rightarrow P-point without rapid RK-predecessors.

Definition

An ultrafilter \mathcal{U} is a *strong P*-*point* if given a sequence $\langle C_n : n \in \omega \rangle$ of compact subsets of \mathcal{U} there is a partition $\langle I_n : n \in \omega \rangle$ of ω into intervals such that whenever $U_n \in C_n$ for all $n \in \omega$ then

$$\bigcup_{n\in\omega}I_n\cap U_n\in\mathcal{U}.$$

$\mathbb{M}_\mathcal{F}$ and dominating reals

Theorem (H.-Minami)

Let \mathcal{I} be an ideal on ω . Then $\mathbb{M}_{\mathcal{I}^*}$ does not add a dominating real if and only if the ideal $\mathcal{I}^{<\omega}$ is a P^+ -ideal.

Theorem (Blass-H.-Verner)

Let \mathcal{U} be an ultrafilter on ω . Then $\mathbb{M}_{\mathcal{I}^*}$ does not add a dominating real if and only if the ultrafilter \mathcal{U} is a strong P-point.

Theorem (H.-Verner)

If \mathcal{U} is $\mathcal{P}(\omega)/\mathcal{I}$ -generic for an F_{σ} P-ideal then \mathcal{U} is a P-point without rapid RK-predecessors which is not a strong P-point.

$\mathbb{M}_\mathcal{F}$ and dominating reals

Question (Brendle)

Is it consistent with ZFC that for every MAD family \mathcal{A} the forcing $\mathbb{M}_{\mathcal{I}(\mathcal{A})^*}$ does not add a dominating real?

Theorem (H.-Martínez)

For every tall ideal $\mathcal J$ there is a MAD family $\mathcal A$ such that the forcing $\mathbb M_{\mathcal I(\mathcal A)^*}$ destroys $\mathcal J.$

So,

- Brendle's question has a negative answer,
- There are no preservation theorems (other than general preservation theorems for σ-centered forcings) for forcings of the type M_{I(A)*}.

A B + A B +

$\mathbb{M}_\mathcal{F}$ and dominating reals

Theorem (Raghavan)

Shelah's forcing for increasing \mathfrak{s} without increasing \mathfrak{b} can be decomposed as a two step iteration $\mathbb{F} * \mathbb{M}_{\mathcal{U}}$, where \mathbb{F} is the forcing with F_{σ} filters and \mathcal{U} is the \mathbb{F} -generic ultrafilter.

Question

Let \mathcal{I} be a Borel ideal. Is it true that $\mathbb{M}_{\mathcal{I}}$ does not add a dominating real if and only if \mathcal{I} is F_{σ} ?